Estimated Phytoplankton Size

Estimated Phytoplankton Size#

Hide code cell source
import warnings
warnings.filterwarnings("ignore")
import os
import os.path as op
import sys

import pandas as pd
import numpy as np
import xarray as xr
import geopandas as gpd
import cartopy.crs as ccrs
import matplotlib.pyplot as plt

sys.path.append("../../../../indicators_setup")
from ind_setup.plotting_int import plot_timeseries_interactive
from ind_setup.plotting import plot_base_map, plot_map_subplots, plot_bar_probs
from ind_setup.core import fontsize

sys.path.append("../../../functions")
from data_downloaders import download_ERDDAP_data

Define area of interest

#Area of interest
lon_range  = [129.4088, 137.0541]
lat_range = [1.5214, 11.6587]

EEZ shapefile

shp_f = op.join(os.getcwd(), '..', '..','..', 'data/Palau_EEZ/pw_eez_pol_april2022.shp')
shp_eez = gpd.read_file(shp_f)

Download Data#

DATASET: https://oceanwatch.pifsc.noaa.gov/erddap/info/md50_exp/index.html

update_data = False
path_data = "../../../data"
path_figs = "../../../matrix_cc/figures"
Hide code cell source
base_url = 'https://oceanwatch.pifsc.noaa.gov/erddap/griddap/md50_exp.csv'
dataset_id = 'MD50'

if update_data:
    date_ini = '1998-01-01T00:00:00Z'
    date_end = '2023-12-01T00:00:00Z'
    data = download_ERDDAP_data(base_url, dataset_id, date_ini, date_end, lon_range, lat_range)
    data_xr = data.set_index(['latitude', 'longitude', 'time']).to_xarray()
    data_xr['time'] = pd.to_datetime(data_xr.time)
    data_xr = data_xr.coarsen(longitude=2, latitude=2, boundary = 'pad').mean()
    data_xr.to_netcdf(op.join(path_data, f'griddap_{dataset_id}.nc'))
else:
    data_xr = xr.open_dataset(op.join(path_data, f'griddap_{dataset_id}.nc'))
ax = plot_base_map(shp_eez = shp_eez, figsize = [10, 6])
im = ax.pcolor(data_xr.longitude, data_xr.latitude, data_xr.mean(dim='time')[dataset_id], transform=ccrs.PlateCarree(), 
                cmap = 'YlGnBu', vmin = 0.8, vmax = 1.3)
ax.set_extent([lon_range[0], lon_range[1], lat_range[0], lat_range[1]], crs=ccrs.PlateCarree())
plt.colorbar(im, ax=ax, label='Phytoplankton (µm)')
plt.savefig(op.join(path_figs, 'F16_phytoplankton_mean_map.png'), dpi=300, bbox_inches='tight')
../../../_images/0fdc0340f1b0a0129bc95a82dc239e1f458a3db382bfe56eefc632b637c87352.png
data_y = data_xr.resample(time='1YE').mean()
plot_map_subplots(data_y, 'MD50', shp_eez = shp_eez, cmap = 'YlGnBu', vmin = 0.4, vmax = 1.6, cbar = 1)
../../../_images/91db0776754c3b86f9fe645577b3be3ed205b49638332bb52dd17c80db8b9b3a.png ../../../_images/91db0776754c3b86f9fe645577b3be3ed205b49638332bb52dd17c80db8b9b3a.png
data_an = data_y - data_xr.mean(dim='time')
plot_map_subplots(data_an, dataset_id, shp_eez = shp_eez, cmap='RdBu_r', vmin=-.3, vmax=.3, cbar = 1)
../../../_images/b8dfadf333d3741e25b39c01d1ecba20e9cb6b093b025b14be98446cb4bfdb6c.png ../../../_images/b8dfadf333d3741e25b39c01d1ecba20e9cb6b093b025b14be98446cb4bfdb6c.png

Mean Area#

dict_plot = [{'data' : data_xr.mean(dim = ['longitude', 'latitude']).to_dataframe(), 
              'var' : dataset_id, 'ax' : 1, 'label' : 'Median Phytoplankton Size - MEAN AREA'},]
fig = plot_timeseries_interactive(dict_plot, trendline=True, scatter_dict = None, figsize = (25, 12));
fig.write_html(op.join(path_figs, 'F16_phytoplankton_mean_trend.html'), include_plotlyjs="cdn")

Given point#

loc = [7.35, 134.48]
dict_plot = [{'data' : data_xr.sel(longitude=loc[1], latitude=loc[0], method='nearest').to_dataframe(), 
              'var' : dataset_id, 'ax' : 1, 'label' : f'Median Phytoplankton Size at [{loc[0]}, {loc[1]}]'},]
ax = plot_base_map(shp_eez = shp_eez, figsize = [10, 6])
ax.set_extent([lon_range[0], lon_range[1], lat_range[0], lat_range[1]], crs=ccrs.PlateCarree())
ax.plot(loc[1], loc[0], '*', markersize = 12, color = 'royalblue', transform=ccrs.PlateCarree(), label = 'Location Analysis')
ax.legend()
<matplotlib.legend.Legend at 0x185e7c590>
../../../_images/9fcf55ad7d1a6ee4e160ea4b836a3952f8ac1ef3c807c402f455b68163f18752.png
fig = plot_timeseries_interactive(dict_plot, trendline=True, scatter_dict = None, figsize = (25, 12));