Ocean Acidification: pH

Ocean Acidification: pH#

Hide code cell source
import warnings
warnings.filterwarnings("ignore")
import os
import os.path as op
import sys

import pandas as pd
import numpy as np
import xarray as xr
import geopandas as gpd
import cartopy.crs as ccrs
import matplotlib.pyplot as plt

sys.path.append("../../../../indicators_setup")
from ind_setup.plotting_int import plot_timeseries_interactive
from ind_setup.plotting import plot_base_map, plot_map_subplots
from ind_setup.core import fontsize

sys.path.append("../../../functions")
from data_downloaders import download_ERDDAP_data

Define area of interest

#Area of interest
lon_range  = [129.4088, 137.0541]
lat_range = [1.5214, 11.6587]

EEZ shapefile

path_figs = "../../../matrix_cc/figures"
shp_f = op.join(os.getcwd(), '..', '..','..', 'data/Palau_EEZ/pw_eez_pol_april2022.shp')
shp_eez = gpd.read_file(shp_f)

Load Data#

Superficial depth

data_xr = xr.open_dataset(op.join(os.getcwd(), '..', '..','..', 'data/data_phyc_o2_ph.nc')).isel(depth = 0)
dataset_id = 'ph'
label = 'pH'
ax = plot_base_map(shp_eez = shp_eez, figsize = [10, 6])
im = ax.pcolor(data_xr.longitude, data_xr.latitude, data_xr.mean(dim='time')[dataset_id], transform=ccrs.PlateCarree(), 
                cmap = 'magma_r', 
                vmin = np.nanpercentile(data_xr.mean(dim = 'time')[dataset_id], 1), 
                vmax = np.nanpercentile(data_xr.mean(dim = 'time')[dataset_id], 99))
ax.set_extent([lon_range[0], lon_range[1], lat_range[0], lat_range[1]], crs=ccrs.PlateCarree())
plt.colorbar(im, ax=ax, label= label)
plt.savefig(op.join(path_figs, 'F14_pH_mean_map.png'), dpi=300, bbox_inches='tight')
../../../_images/7ebf80348a4bbd7501e1736993ff884e56bc13941267f3bbe7e3000ecb795466.png
data_y = data_xr.resample(time='1YE').mean()
im = plot_map_subplots(data_y, dataset_id, shp_eez = shp_eez, cmap = 'magma_r', 
                  vmin = np.nanpercentile(data_xr.min(dim = 'time')[dataset_id], 1), 
                  vmax = np.nanpercentile(data_xr.max(dim = 'time')[dataset_id], 99),
                  cbar = 1)
../../../_images/6cb145442ba302e5484dac01739b6fdbeac8467b7e26b107401918781a09bd66.png
data_an = data_y - data_xr.mean(dim='time')
plot_map_subplots(data_an, dataset_id, shp_eez = shp_eez, cmap='RdBu_r', vmin=-.1, vmax=.1, cbar = 1)
../../../_images/33ac1a205621971dc0300ed11c8e951d8507b8619a4d11459f23bcf56ecb6452.png ../../../_images/33ac1a205621971dc0300ed11c8e951d8507b8619a4d11459f23bcf56ecb6452.png

Mean Area#

dict_plot = [{'data' : data_xr.mean(dim = ['longitude', 'latitude']).to_dataframe(), 
              'var' : dataset_id, 'ax' : 1, 'label' : 'pH - MEAN AREA'},]
fig = plot_timeseries_interactive(dict_plot, trendline=True, scatter_dict = None, figsize = (25, 12));
fig.write_html(op.join(path_figs, 'F14_pH_mean_trend.html'), include_plotlyjs="cdn")

Given point#

loc = [7.37, 134.7]
dict_plot = [{'data' : data_xr.sel(longitude=loc[1], latitude=loc[0], method='nearest').to_dataframe(), 
              'var' : dataset_id, 'ax' : 1, 'label' : f'{label} at [{loc[0]}, {loc[1]}]'},]
ax = plot_base_map(shp_eez = shp_eez, figsize = [10, 6])
ax.set_extent([lon_range[0], lon_range[1], lat_range[0], lat_range[1]], crs=ccrs.PlateCarree())
ax.plot(loc[1], loc[0], '*', markersize = 12, color = 'royalblue', transform=ccrs.PlateCarree(), label = 'Location Analysis')
ax.legend()
<matplotlib.legend.Legend at 0x18473df40>
../../../_images/038a2757803511e8b284fa11a57d0ba084269dbabe56e09215299e69572e231d.png
fig = plot_timeseries_interactive(dict_plot, trendline=True, scatter_dict = None, figsize = (25, 12));